4 research outputs found

    Motion planning and assembly for microassembly workstation

    Get PDF
    In general, mechatronics systems have no standard operating system that could be used for planning and control when such devices are running. Our goal is to formulate a work platform that can be used as an environment for obtaining precision in the manipulation of micro-entities using micro-scale manipulation tools of our microsystem applications such as our microassembly workstation. The microassembly workstation setup is made up of the manipulation system, vision system, robust control system and manipulation tools. In this thesis we also provide groundwork for motion planning and assembly of the microassembly workstation manipulation system. We implemented the motion planning algorithms which are tested in the virtual workspace environment in order to demonstrate the functionality of the work platform. Firstly, we investigate the performance of the conventional Euclidean distance algorithm, then, artificial potential field algorithm, and finally A* algorithm when implemented on a virtual space. The physical conditions of the microworld hinder the immediate application of the work platform with the motion planning algorithms on the microassembly workstation. We demonstrate our test results of the motion planning algorithms on the virtual workspace and grid window of the work platform. However, due to object oriented programming nature of the work platform, eventually the work platform can be easily interfaced with the microassembly workstation once the problems which limit the micromanipulation and assembly are attended

    Motion planning and assembly for microassembly workstation

    Get PDF
    In general, mechatronics systems have no standard operating system that could be used for planning and control when these complex devices are running. The goal of this paper is to formulate a work platform that can be used as a method for obtaining precision in the manipulation of micro-entities using micro-scale manipulation tools for microsystem applications. This paper provide groundwork for motion planning and assembly of the Micro-Assembly Workstation (MAW) manipulation system. To demonstrate the feasibility of the idea, the paper implements some of the motion planning algorithms; it investigates the performance of the conventional Euclidean distance algorithm (EDA), artificial potential fields’ algorithm, and A* algorithm when implemented on a virtual space

    A fast algorithm for vision-based hand gesture recognition for robot control

    Get PDF
    We propose a fast algorithm for automatically recognizing a limited set of gestures from hand images for a robot control application. Hand gesture recognition is a challenging problem in its general form. We consider a fixed set of manual commands and a reasonably structured environment, and develop a simple, yet effective, procedure for gesture recognition. Our approach contains steps for segmenting the hand region, locating the fingers, and finally classifying the gesture. The algorithm is invariant to translation, rotation, and scale of the hand. We demonstrate the effectiveness of the technique on real imagery
    corecore